. A P ] 2 1 Ju n 20 04 CORRECTIONS TO THE KDV APPROXIMATION FOR WATER WAVES — PREPRINT

نویسنده

  • DOUGLAS WRIGHT
چکیده

In order to investigate corrections to the common KdV approximation for surface water waves in a canal, we derive modulation equations for the evolution of long wavelength initial data. We work in Lagrangian coordinates. The equations which govern corrections to the KdV approximation consist of linearized and inhomogeneous KdV equations plus an inhomogeneous wave equation. These equations are explicitly solvable and we prove estimates showing that they do indeed give a significantly better approximation than the KdV equation alone. AMS classification: 76B15, 35Q51, 35Q53

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrections to the KdV Approximation for Water Waves

In order to investigate corrections to the common KdV approximation for surface water waves in a canal, we derive modulation equations for the evolution of long wavelength initial data. We work in Lagrangian coordinates. The equations which govern corrections to the KdV approximation consist of linearized and inhomogeneous KdV equations plus an inhomogeneous wave equation. These equations are e...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

Soliton interaction for the extended Korteweg-de Vries equation

Soliton interactions for the extended Korteweg-de Vries (KdV) equation are examined. It is shown that the extended KdV equation can be transformed (to its order of approximation) to a higher-order member of the KdV hierarchy of integrable equations. This transformation is used to derive the higher-order, two-soliton solution for the extended KdV equation. Hence it follows that the higher-order ...

متن کامل

Higher order corrections for shallow-water solitary waves: elementary derivation and experiments

We present an elementary method to obtain the equations of the shallow-water solitary waves in different orders of approximation. The first two of these equations are solved to get the shapes and propagation velocities of the corresponding solitary waves. The first order equation is shown to be equivalent to the Korteweg−de Vries (KdV) equation, while the second order equation is solved numeric...

متن کامل

A numerical study of the Whitham equation as a model for steady surface water waves

The object of this article is the comparison of numerical solutions of the so-called Whitham equation describing wave motion at the surface of a perfect fluid to numerical approximations of solutions of the full Euler free-surface water-wave problem. The Whitham equation ηt + 3 2 c0 h0 ηηx +Kh0∗ ηx = 0 was proposed by Whitham [33] as an alternative to the KdV equation for the description of sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004